博客
关于我
对embedding的理解
阅读量:553 次
发布时间:2019-03-09

本文共 288 字,大约阅读时间需要 1 分钟。

在深度学习领域,向量常被用来描述输入数据的特征。这种需求在自然语言处理(NLP)和计算机视觉(CV)中尤为突出。在NLP应用中,一个完整的句子会被分解为单个词,每一个单词都有一个对应的 embedding 向量,用来表示该单词在语义上的特性。在计算机视觉中,输入一张图片后,系统会对其中的不同区域或对象进行分割,每个区域都能得到一个 embedding 向量来表示其特征特征表示。嵌入向量的核心作用在于,将输入的高维数据(如词向量或图像向量)映射到一个相对低维但仍能捕捉实体信息的嵌入空间,使得复杂的特征关系能够以更简洁的方式表达和计算。这种方法在特征提取方面具有显著的优势。

转载地址:http://ljmsz.baihongyu.com/

你可能感兴趣的文章
NSOperation基本操作
查看>>
NSRange 范围
查看>>
NSSet集合 无序的 不能重复的
查看>>
NSURLSession下载和断点续传
查看>>
NSUserdefault读书笔记
查看>>
NS图绘制工具推荐
查看>>
NT AUTHORITY\NETWORK SERVICE 权限问题
查看>>
NT symbols are incorrect, please fix symbols
查看>>
ntelliJ IDEA 报错:找不到包或者找不到符号
查看>>
NTFS文件权限管理实战
查看>>
ntko web firefox跨浏览器插件_深度比较:2019年6个最好的跨浏览器测试工具
查看>>
ntko文件存取错误_苹果推送 macOS 10.15.4:iCloud 云盘文件夹共享终于来了
查看>>
ntp server 用法小结
查看>>
ntpdate 通过外网同步时间
查看>>
ntpdate同步配置文件调整详解
查看>>
NTPD使用/etc/ntp.conf配置时钟同步详解
查看>>
NTP及Chrony时间同步服务设置
查看>>
NTP服务器
查看>>
NTP配置
查看>>
NUC1077 Humble Numbers【数学计算+打表】
查看>>